Growth-induced Water Potentials in Plant Cells and Tissues.
نویسنده
چکیده
A physical analysis of water movement through elongating soybean (Glycine max L. Merr.) hypocotyls was made to determine why significant water potentials persist in growing tissues even though the external water potentials were zero and transpiration is virtually zero. The analysis was based on a water transport theory modified for growth and assumed that water for growing cells would move through and along the cells in proportion to the conductivity of the various pathways.Water potentials calculated for individual cells were nearly in local equilibrium with the water potentials of the immediate cell surroundings during growth. However, water potentials calculated for growing tissue were 1.2 to 3.3 bars below the water potential of the vascular supply in those cells farthest from the xylem. Only cells closest to the xylem had water potentials close to that of the vascular supply. Gradients in water potential were steepest close to the xylem because all of the growth-sustaining water had to move through this part of the tissue. Average water potentials calculated for the entire growing region were -0.9 to -2.2 bars depending on the tissue diffusivity.For comparison with the calculations, average water potentials were measured in elongating soybean hypocotyls using isopiestic thermocouple psychrometers for intact and excised tissue. In plants having virtually no transpiration and growing in Vermiculite with a water potential of -0.1 bar, rapidly growing hypocotyl tissue had water potentials of -1.7 to -2.1 bars when intact and -2.5 bars when excised. In mature, nongrowing hypocotyl tissue, average water potentials were -0.4 bar regardless of whether the tissue was intact or excised.The close correspondence between predicted and measured water potentials in growing tissue indicates that significant gradients in water potential are required to move growth-associated water through and around cells over macroscopic distances. The presence of such gradients during growth indicates that cells must have different cell wall and/or osmotic properties at different positions in the tissue in order for organized growth to occur. The mathematical development used in this study represents the philosophy that would have to be followed for the application of contemporary growth theory when significant tissue water potential gradients are present.
منابع مشابه
Transpiration- and growth-induced water potentials in maize.
Recent evidence from leaves and stems indicates that gradients in water potential (psi(w)) necessary for water movement through growing tissues are larger than previously assumed. Because growth is sensitive to tissue psi(w) and the behavior of these gradients has not been investigated in transpiring plants, we examined the water status of all the growing and mature vegetative tissues of maize ...
متن کاملRole of mesenchymal stem cells in growth and progression of cancer and prospective potentials in cancer therapy
Introduction: Mesenchymal stem cells (MSCs) are present in most tissues of the body. These cells are involved in various biological processes, such as maintaining tissue homeostasis and wound healing. Recent studies have shown that tumor associated MSCs (TA-MSCs) are also present in tumor microenvironment (TME) of most solid tumors. MSCs have a strong tendency to migration toward tumor tissues....
متن کاملWater relations, pigment stabilization, photosynthetic abilities and growth improvement in salt stressed rice plants treated with exogenous potassium nitrate application
Potassium is a major nutrient which may play an important role in many processes such as ion homeostasis in plant cells and osmotic adjustment of guard cells during stomatal opening and closing. Pathumthani 1 (PT1) rice has been reported as being a salt sensitive cultivar and has been selected as a model plant in this study to investigate the possibility of improving the osmotic potential, pigm...
متن کاملPlant Growth Promoting Rhizobactria Enhance Salinity Stress Tolerance in Cumin (Cuminum cyminum L.) During Germination Stage
In order to investigate the effect of seed inoculation with Plant Growth Promoting Rhizobactria (PGPR) on germination and some biochemical and physiological indices of Cumin (Cuminum cyminum L.) under salinity stress, an experiment was conducted. Experimental factors were included in seed priming in five levels (seed inoculation with three strains of Pf2, Pf25 and CHA0 of Pseudomonas fluorescen...
متن کاملThe effect of hydropriming and halopriming on germination and early growth stage of wheat (Triticum aestivum L.)
In order to study of hydropriming and halopriming on germination and early growth stage of wheat (Triticum aestivum L.) an experiment was carried out in laboratory of the Department of AgroNomy and Plant breeding, Shahrood University of Technology. Seed treatments consisted of T1: control (untreated seeds), T2: soaking in distilled water for 18 h (hydropriming). T3: soaking in -1.2 MPa solution...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 62 3 شماره
صفحات -
تاریخ انتشار 1978